PhD: In-situ characterization of electrode surface morphology

The goal of this PhD is to obtain quantitative experimental data of the local electrode conditions and environment during electro-reduction (ER) processes. This project will take a radical approach in this field of research: in-situ, near-surface characterization by non-invasive micro-(electrochemical) sensors. There is still quite limited experimental accessibility to the chemical and physical processes taking place at the proximity of electrode surfaces. This key information for better understanding of the process and optimal design of the electrode, combined with the selection of an adequate electrolyte, is prerequisite to achieving higher selectivity and productivity of the “CO2 to base chemicals” conversion. To mimic industrial production the effect of high current densities is part of the research.

The main focus is on the in-situ study and quantitative monitoring of the properties of the electrode (catalyst) as well as the processes taking place locally at the electrode-electrolyte interface when changing local physical and chemical parameters. This should lead to an optimized catalyst design to achieve higher efficiency and selectivity for the ER-CO2 process.

Energy Club